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ABSTRACT
This paper summarizes part of SRI’s effort to improve acoustic mod-
eling in the context of the Large Vocabulary Continuous Speech
Recognition (LVCSR) project. It concentrates on two problems
that are believed to contribute to the large error rates observed with
LVCSR databases: (1) the lack of discriminative power of the speech
models in the acoustic space, and (2) the discrepancy between the
criterion used to train the models (typically frame-level maximum
likelihood) and the task expected from the models (word-level recog-
nition).

We address the first issue by searching for features that help in nar-
rowing the model distributions, and by proposing a neural-network-
based architecture to combine these features. The neural networks
(NNET) are used in association with a set of large Gaussian mixture
models (GMM) whose mixture weights are dynamically estimated
by the neural networks, for each frame of incoming data. We call the
resulting algorithm DYNAMO, fordynamic acoustic modeling. To
address the second problem, we propose two discriminative training
criteria, both defined at the sentence level. We report preliminary
results with the Spanish Callhome database.

1. Introduction
Many factors contribute to the relatively low performance of state-
of-the-art speech recognizers operating on spontaneous, telephone,
speech. The diversity of speakers and speaking styles, the typi-
cally relaxed articulation, the multitude of pronunciation variants,
the presence of extraneous noises, the superposition of more than
one voice in some segments, and the distortion due to the communi-
cation channel are just a few. Whereas some of these factors can be
efficiently dealt with by explicit modeling (e.g.vocal tract normaliza-
tion (e.g. [AKC94]), pronunciation modeling (e.g. [Slo95, FW97])),
many others are left upon the acoustic models whose multi-modal
distributions must implicitly model all the remaining variations. This
however has the well-known drawback of resulting in broad distri-
butions with overlaps that often cause recognition errors.

In this context, identifying features that act as discriminants in the
acoustic space would be useful to narrow the acoustic distributions.
If such features can be found, the problem becomes how to use them,
and how to ensure that sufficient data sharing is allowed for the model
parameters to be reliably estimated. These are the main issues that
motivated this work.

In the past decade, contextual linguistic features have been widely
used in conjunction with decision tree models, and have significantly
improved recognition performance (e.g. [BdSG+91, YOW94]). De-
cision trees however make data sharing among different states diffi-
cult, and are not well suited to the use of features that are continuous

in nature, as opposed to binary. For these reasons, we chose instead
to base our models on neural networks.

More recently, Ostendorfet al. [OBB+97] showed that a combina-
tion of acoustic and prosodic features could greatly help identifying
speechsegments that were erroneously recognized (32% predictabil-
ity improvement for a 10-hour training subset of Switchboard). Sim-
ilar results were reported by various researchers working on confi-
dence measures for word recognition (e.g.[WBR+97]). Presumably,
some of these features, which include various measures of speaking
rate, SNR, energy, fundamental frequency, stress pattern, and sylla-
ble position, could be directly used to disambiguate large acoustic
distributions.

In the field of speaker recognition, the use of handset detectors has
dramatically decreased recognition error rates by sorting out carbon
button from electret handsets [Rey96, HW97]. The handset type
could also be used as an input to the acoustic modeling algorithms.

Another important issue in acoustic modeling is how to capture the
dynamics of the speech signal. Much research has recently been
devoted to relaxing the independence assumption imposed by most
hidden Markov modeling approaches (HMM) and to modeling the
correlation between successive frames of data, leading to the fam-
ily of so-called segment models [ODK96]. Without embarking in
this level of complexity, and following a feature-based approach, we
propose to include in the acoustic models time features similar to the
time index proposed in [GN93, DASW94] and [KM94]. These fea-
tures don’t model correlation but they do alleviate the independence
assumption.

Our goal here is to explore the usefulness of such knowledge sources
as acoustic discriminants, and to propose an efficient and robust ar-
chitecture to incorporate them in the acoustic models. Clearly, the
richness of the acoustic space representation will have a strong influ-
ence on how far this approach can be pushed, but the success of the
experiments cited above (handset classification, feature-based error
prediction, etc.) indicate that the cepstrum-based representation that
most systems use offers enough flexibility for the acoustic models to
be significantly improved.

As mentioned before, the architecture we propose relies on neural
networks. An important issue related to this choice is the selection
of a training criterion to optimize the weights of the networks. The
desirable properties for this criterion are (1) to be discriminative, (2)
to be closely related to the metric used to evaluate the performance
of the recognizer (typically the word error rate (WER)), and (3) to
be differentiable with respect to the weights of the neural networks.

Not all the above issues will be discussed in the paper since this



System Eval ’95 Eval ’96

baseline 71:00 65:22
+ DT 67:77 64:37
+ CI (size: 1/16 DTs) 68:77 65:22
+ CI (size: 1/8 DTs) 68:27 65:22
+ CI (size: 1/4 DTs) 68:34 65:10
+ CI (size: 1/2 DTs) 67:98 64:49
+ CI (size: 1/1 DTs) 67:69 64:31
N-best error rate 52:54 =

Table 1: N-best list rescoring with decision tree models and context-
independent phone models of different sizes: WER in %.

work is still in an early stage. Our first goals were to validate the
architecture we propose and to investigate different discriminative
training criteria. These two points will be addressed. Feature selec-
tion, however, will be the object of future work: for our preliminary
experiments, we used a set generic knowledge sources including
linguistic features and time indices.

2. Baseline System and Databases
The baseline system for this work is a speaker-independent con-
tinuous speech recognition system trained with 75 conversations of
Callhome Spanish data and 80 conversations from Callfriend Span-
ish. It is based on continuous-density, genonic HMMs [DMM96],
and uses a multipass recognition strategy [MBDW93] with a vocab-
ulary of 8K words, non-cross-word acoustic models, and a bigram
language model. N-best lists are generated, and rescored with the
original acoustic models, a trigram language model, and additional
acoustic models such as decision-tree-basedcross-word models (DT)
or large context-independent phone GMMs (CI).

3. Recognition with Large
Context-Independent Models

We conducted on the Spanish Callhome database a series of N-
best list rescoring experiments with decision tree models and with
large context-independent GMMs. The numbers of Gaussians in
the GMMs were chosen to be fractions of the numbers of Gaussians
used in the corresponding decision tree models. The smallest models
had 16 times less Gaussians than the decision tree models, and the
largest models had exactly the same size. Recognition experiments
were performed with two sets of 200 sentences selected at random
from the male evaluation test sets of 1995 and 1996. The results,
reported in Table 1, show that, for this database, context-independent
models perform as well as or slightly better than decision tree models,
provided that the numbers of parameters are equal.

4. The DYNAMO Algorithm
The architecture we propose is based on a hybrid system combining
feedforward neural networks and context-independent phone mod-
els. Each phone is modeled with a large GMM whose mixture
weights are dynamically estimated by a neural network (see Fig.
1), hence the name of the algorithm, DYNAMO. The means and
variances of the GMMs are held constant. The inputs to the neural
network are the knowledge sourcesdiscussedin the introduction. For
each data frame, the knowledge sources for each phone are evaluated
and inputted into the corresponding NNET. Each NNET outputs a

set of mixture weights, and the likelihood of the observed data is
computed from the corresponding phone GMM.
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Figure 1: A hybrid NNET-GMM model for dynamic acoustic mod-
eling.

Specifically, the likelihood of an observation,xk, with respect to
phone' is given by

p(xkj N
'
;G') =

NgX
g=1

P
'
g (s

'

k )N
'
g (xk); (1)

whereN ' andG' denote, respectively, the NNET and the GMM
associated to phone', Ng is the number of Gaussians inG', N'

g (:)

andP'
g (:) are, respectively, thegth mixture component and thegth

mixture weight inG', ands'k represents the vector of knowledge
sources for phone', at timek.

Because the mixture weights for each phone must sum to one, the
training of the neural networks is a constrained optimization prob-
lem. To simplify the training procedure, we chose to hard-wire
this constraint in the architecture of the neural networks by using a
“softmax” output layer [Bri90]:

Pg(s) =
eyg(s)P
j
eyj(s)

; (2)

whereyg(:) is the gth output of the neural network, before the
softmax layer.

The Gaussians in each phone model can be interpreted as a set of
basis functions. A multimodal probability density function is then
estimated for each observation by taking a linear combination of the
basis functions, the weights of which are computed dynamically by
the neural network. The discriminative emphasis of certain portions
of the acoustic space at each instant has the effect of narrowing the
distributions around the acoustic areas where the data is expected to
lie.

This architecture thus outputs the likelihoods of the observations.
This is in contrast with NNET-HMM hybrids trained for state classi-
fication [BM90], where the outputs are state posterior probabilities
that need to be converted into likelihoods, and with approaches such
as REMAP [BKM95, KBM96] that estimate global posterior proba-
bilities of word sequences.

4.1. Training of the DYNAMO Models
The DYNAMO models are trained in two phases. First, the
context-independent phone GMMs are trained with the expectation-
maximization (EM) algorithm to maximize the log-likelihood of the
training data. The means and variances of these models are retained;



the mixture weights are discarded. Then, the adaptive parameters of
the neural networks are trained with the stochastic steepest descent
algorithm to optimize some criterion�. The neural network weights
are thus updated according to

Θ'
n+1 = Θ'

n + ∆Θ'
n (3)

∆Θ'
n = � r̂Θ'n �'; (4)

whereΘ'
n denotes the set of neural network weights for phone' at

iterationn, r̂Θ'n �' is the instantaneous gradient of the optimization
criterion�' for phone', and� is a constant that controls the learning
rate.

Note that the optimization criterion�' does not need to be identical
to the criterion used to train the GMMs (ML). Indeed, we argue in
the next sections that discriminative training is better suited to this
task. For now, however, we will assume for simplicity that�' is the
average log-likelihood of the data,

�' =
X
k

log p(xkj N
'
;G'); (5)

where the sum is taken over all the observationsxk aligned to phone
'.

Applying the chain rule to the derivatives of Eq. 5, and taking Eq. 2
into account, we find
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can be backpropagated through the neural network, as in the tradi-
tional backpropagation algorithm [RMT86].

Intuitively, the backpropagation term,�, for Gaussianj is large in
absolute value if the posterior probability of the Gaussian is very
different from its prior probabilityPj, with both probabilities being
functions of the knowledge sources for the current data frame.

4.2. Initialization of the neural networks
To fasten the convergenceof the neural networksand steer them away
from uninteresting local minima, we initially set their weights so that
the network outputs are equal to the mixture weights estimated with
the EM algorithm.

5. Recognition Experiments with ML-trained
Dynamo Models

We performed a set of rescoring experiments with ML-trained DY-
NAMO models, using linguistic questions and, in some experiments,
time features. We chose the linguistic features to be identical to those
selected by the decision trees in previous DT-rescoring experiments.
The time features for a hypothesized phone aligned toT frames of
data were the phone duration,T , and the relative time indext=T ,
wheret = 0:::T � 1.

Results are given in Table 2, where the baseline obtained by rescor-
ing the N-best lists with the GMMs is given for comparison. These

GMM size Experiment WER

�1=16 no NNETs – baseline 68:77
�1=16 NNETs w/ ling. feat. & time feat. 69:20
�1=16 NNETs w/ ling. feat. only 68:92
�1=8 no NNETs – baseline 68:27
�1=8 NNETs w/ ling. feat. & time feat. 69:35

Table 2: Rescoring experiments with ML-trained DYNAMO models:
WER in %.

numbers show that the introduction of the ML-trained networks in-
creased the overall WER. Further analysis of the results revealed that
the likelihood of the test data had increased as a result of training but
that the posterior probabilities of the correct models had decreased.
This indicated that competing models scored higher than the correct
model, which confirmed that discriminative training should be used
instead.

6. Discriminative Training Criteria
Discriminative training of speech models was first introduced by
Bahlet al. under the form of Maximum Mutual Information (MMI)
estimation [BBdSM86]. In this framework, the speech models are
trained to maximize the mutual information between the observation
sequenceX = [x1; :::;xk; :::xN ] and the correct word sequence
Wc:

Θ�
= arg max

Θ
IΘ(Wc;X ); (8)

with

IΘ(Wc;X ) =
p(X ;Wc)

p(X )p(Wc)
=

p(XjWc)P
W

p(XjW )p(W )
; (9)

where the sum in the denominator is taken over all possible word
sequences,W .

Practical implementations of Eq. 9 for continuous speech recognition
include the estimation of the denominator with a phone loop model
[Mer88], and its approximation by a sum over the hypotheses in an
N-best list [Cho90].

The first optimization criterion we propose is similar to the N-best
list implementation of MMI, but differs in that we augment the N-
best list with the correct word sequence,Wc. We then maximize the
posterior probability of the correct word sequence,

P (WcjX ) =
p(XjWc)p(Wc)

p(XjWc)p(Wc) +
PNh

h=1
p(XjWh)p(Wh)

; (10)

whereNh is the N-best list depth. The inclusion of the joint prob-
ability of the observation and the correct word sequence in the de-
nominator makes the criterion depart from the original MMI but has
a useful property in terms neural network training as we will show.

Another family of discriminative criteria stems from the motivation
of directly optimizing the metric used to evaluate the recognizer,
i.e. the word error rate. Bahlet al. proposed the heuristic “corrective
training” procedure in [BBdSM88]. Katagiriet al. developed the
Generalized Probabilistic Descent method that extends the idea of
Bayes optimum classification by introducing smooth classification



error functions, and generalizes this framework to the classification
of patterns of variable lengths [KLJ91].

The second criterion we propose consists in minimizing the average
number of errors over the N-best list,

ANER(X ) =
1
Nh

NhX
h=1

NER(Wh)P (WhjX ); (11)

where NER(Wh) denotes the number of errors in thehth hypothesis,
andP (WhjX ) is the posterior probability of thehth hypothesis in
the (non-augmented) N-best list.

Both criteria are optimized in a stochastic optimization framework,
as we will discuss shortly. In both cases, the training procedure
requires N-best lists for all the training data. This is typically quite
costly but not infeasible, especially if the N-best list depth is limited
to a small number of hypotheses (5 or 10).

6.1. Maximizing the posterior probability of the
correct sentence

Let p(i) denote the joint probability of a word sequencei (reference
or hypothesis) and of the corresponding acoustic sequence,

p(i) = pLM (i) pAM (i)
1=�

; (12)

wherepLM (i) andpAM (i) are shorthands for the language model
and acoustic model probabilities,p(Wi) andp(XjWi), respectively,
and where� is the language model weight.

With this notation, we can rewrite the posterior probability of the
correct word sequence in Eq. 10 as

P (c) =
p(c)

p(c) +
P

h
p(h)

: (13)

Likewise,

P (h) =
p(h)

p(c) +
P

h0
p(h0)

; (14)

denotes the posterior probability of thehth hypothesis in the aug-
mented N-best list. (All posteriors and likelihoods are conditioned
upon the set of acoustic modelsfN';G'g for ' = 1:::N'.)

The first training criterion can be expressed as

� =
1
Ns

X
s

logPs(c) (15)

whereNs is the number of sentences in the training set, andPs(c)
represents the posterior probability of the correct transcription of
sentences.

Adapting the neural network weights according to this criterion
amounts to adjusting them after the presentation of each training
sentence by an amount proportional to (stochastic gradient update)

r logPs(c) =
X
h

Ps(h)

h
r logpAM (c)�r logpAM (h)

i
; (16)

where we made use of the property

Ps(c) +

NhX
h=1

Ps(h) = 1: (17)

Since the acoustic log-likelihoods can be expanded into sums over the
observations,xk, in the sentence, the above weight update formula
modifies the neural network weights only for those frames where
the reference and the hypothesis strings do not coincide. In that
case, positive training is given to the correct model (c) and negative
training is given to the erroneously hypothesized model (h). The
log-likelihood gradientsr logp(:) are calculated according to Eqs.
6 and 7. This property results from the fact that the N-best list was
augmented with the correct transcription (Eq. 10).

Another desirable feature of this training criterion is that more train-
ing is given to hypotheses with high posterior probabilities (the mul-
tiplicative term,P (h)).

A potential disadvantage is that the correct hypothesis is often not
in the N-best list for databases with high error rates. Improving the
posterior of the correct sentence may thus result in decreasing the
probability of the best (although erroneous) hypothesis in the N-best
list.

6.2. Minimizing the average number of errors
in the N-best list

The second training criterion we propose is given by

� =
1
Ns

X
s

ANERs; (18)

where the average number of errors ANERs in a sentence was defined
in Eq. 11.

Note that here the posterior probability of ahypothesis is com-
puted only with respect to the other hypotheses in the N-best list
(i.e. without taking the reference into account):

Ps(h) =
p(h)P
h0
p(h0)

: (19)

Intuitively, minimizing ANERs “redistributes” the posterior prob-
ability mass to favorhypotheses with few errors and penalize hy-
potheses with more errors.

Again, the weight update formula can be derived by taking the in-
stantaneous gradient of� with respect to the weights of the neural
networks. The weight update for each sentence is therefore propor-
tional to

�rANERs =
X
h

Ps(h)r logpAM (h)

h
ANERs � NERs(h)

i
: (20)

The characteristics of this weight update formula are quite different
from those of the previous criterion. Negative training is given to
hypotheses that have a number of errors above average, and posi-
tive training is given to hypotheses with a number of errors below



average. Of course, this average, ANERs, evolves with the training
of the models. If the learning process progresses correctly, ANERs

decreases with time, thereby progressively decreasing the number
of hypotheses that receive positive training. In the limit, all the
posteriorsP (h) converge to zero except the one that corresponds to
the hypothesis with the lowest number of errors,h�, and ANERs
converges to NERs(h�), thereby bringing the training process to an
end.

The main disadvantage of this criterion is that positive training is
given to all the frames in the best hypothesis, including those associ-
ated with incorrectly recognized words. This criterion, however, is
closer to the WER metric that we ultimately wish to optimize.

7. Recognition Experiments with
Discriminatively Trained Dynamo Models

These experiments were limited to the training of small models
(NNETs associated to GMMs� 1/16), with linguistic and time
features only.

Fig.2 shows the results of a self-test experiment (i.e. the test data
is identical to the training data) with the 627 male sentences of the
Eval’96 test set of the Spanish Callhome database. The N-best list
depth was limited to 10 hypotheses.
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Figure 2: Average number of errors as a function of the training
epoch, for both training criteria.

The N-best error rate for this set of sentenceswas 41.49%. The learn-
ing curves show that for the self-test experiment the ANER criterion
shows more promise. This however is a cheating experiment, and
the generalization properties of the max-posterior criterion may be
superior. N-best rescoring of 200 randomly selected male sentences
of the Eval’96 test set with the neural networks trained to minimize
the ANER gave a significant WER improvement (see Table 3).

models WER

GMMs� 1=16��baseline 65:22
min ANER NNETs 63:89

Table 3: N-best rescoring with ANER NNETs, self-test experiment:
WER in %.

A fair experiment was conductedwith the max-posterior criterion. A
set of neural networks was trained from linguistic and time features
to output mixture weights for the same small phone models (GMMs
� 1/16). The training data consisted of all 15K male sentences in the
training set, of which 10 % was held as a cross-validation set. The

models were tested on the same subset of Eval’96 as in the previous
experiments. The N-best list depth was limited to 5 hypotheses. The
error rate is given in Table 4. The WER improvement is modest but
since the phone GMMs in this experiments were small and hence not
very detailed, little margin for improvement was left to the NNETs.

models WER

GMMs� 1=16��baseline 65:22
max log-post NNETs 64:79

Table 4: N-best rescoring with log-posterior NNETs, fair experi-
ment: WER in %.

8. Conclusions
We described an algorithm to incorporate new knowledge sources in
a set of acoustic models, with the objective of dynamically increasing
or decreasing the likelihoods of the different modes of the models,
thereby narrowing their distributions. The algorithm makes use of
feedforward neural networks to dynamically estimate the mixture
weights of the speech models, given the knowledge sources for the
current data frame.

We argued that the neural networks need to be discriminatively
trained, and we proposed two training criteria: maximizing the log-
posterior probability of the correct transcription and minimizing the
average number of errors in the N-best list.

Preliminary experiments showed a modest but encouraging improve-
ment in WER. We are currently experimenting with larger phone
models and increased N-best list depths.
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